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Received 17 November 1986, in  final form 9 March 1987 

Abstract. The critical relaxation of the four-state Potts model on L x L lattices with L 5 64 
is studied by the Monte Carlo method. The decay of the magnetisation from a non-  
equilibrium initial state exhibits a crossover from a power-law relaxation for I<< r ' ( L )  to 
an exponential one for r > > f ' ( L ) ,  where t ' ( L )  is some crossover time. This crossover is 
discussed within the context of dynamic finite-size scaling theory. As a result, the dynamic 
critical exponent is estimated to be Z = 2.94 * 0.29. 

Although an  exact solution of the ferromagnetic two-dimensional q-state Potts model 
is available for only q = 2 (the Ising case), the static critical behaviour for q > 2 is well 
established [ 1 1 .  The transition, which is second order for q 4, is expected to be first 
order for q > 4 [2]. Further, the theoretical predictions for the transition temperature 
and the static exponents have been confirmed by various techniques [l] .  

The dynamics, however, are not so well understood. Whereas there are many 
consistent estimates for the dynamic exponent 2 for small q, the latest being [3] 
Z ( q  = 2) = 2.14*0.02 and [4] Z ( q  = 3)  = 2.19i0.05,  little is known about q = 4. The 
analytic predictions for Z(  q = 4) can, at best, be viewed as conjectures. By mapping 
the dynamics of the q-state Potts model on the honeycomb lattice onto the statics of 
a similar model on the hexagonal close-packed lattice, Domany [5] has suggested that 
Z( q = 4) = 4. Different suggestions have been made from time-dependent real space 
renormalisation group studies [6, 71. These values suffer from the shortcoming that 
the methods used to obtain them do not reproduce the correct static behaviour and, 
further, there is also an  undetermined error in the actual dynamic exponent quoted. 

In this letter we discuss the results of computer simulations of the two-dimensional 
four-state Potts model at  its transition temperature, T,. Using dynamic finite-size 
scaling theory [8], we shall obtain the first Monte Carlo estimate for Z ( q  = 4 ) .  

The Hamiltonian for the model under investigation can be written as [9] 

x= -E 6( a J )  ( 1 )  
( V )  

where a, ( a ,  = 1 , 2 , 3 , 4 )  denotes the Potts spin at site i and the summation is over 
nearest neighbours only. As Boltzmann's constant and  the nearest-neighbour interac- 
tion are both set to unity, the system has a second-order phase transition at [2 ,9]  T, = 
[ln(3)]-'. We work exactly at T, with periodic boundary conditions. During the 
simulations, which are performed on L x L ( L  = 4 ,8 ,  16,32,64) lattices, the spins are 
updated according to the conventional Metropolis algorithm [lo].  As we are working 
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at a finite temperature, from universality one expects all updating schemes which 
satisfy detailed balance to yield the same dynamics. This is, of course, not necessarily 
true if the system in question has a zero temperature transition [ 111. 

In this work we concentrate on the decay of the magnetisation, M ( t ) ,  given by 

- 

where a i ( t )  indicates the value of the ith spin at time t .  For each L, we start with 
M (  t = 0) = 1 and record the subsequent behaviour of the magnetisation. To obtain 
reliable statistics one has to average over many samples; see table 1 for details-the 
contents of the final two rows are discussed later. 

From dynamic finite-size scaling [8], the magnetisation of a system of size L x  L 
at T, in zero field evolves according to 

(3) 

where p and v are static exponents and f is a scaling function which has the following 
limiting form: 

M (  t ,  L )  = L-p'"f( t L - Z )  

and here A, B and C are constants. Thus, there is a crossover time t ' (L )  such that 
for t<< t ' (L )  one obtains equation (4a),  while for t >> t ' ( L )  exponential decay is 
expected. Further, t ' (L )  is a monotonically increasing function of L. 

In figure 1 we show a log-log plot of the magnetisation against t for L s 64. Note 
that where the data for L < 64 are indistinguishable from those for L = 64 (see table 
l ) ,  only the largest size is displayed. For each L<64, there is a crossover from 
power-law decay at short times to a faster one at longer times. To see if the faster 
decay is indeed an exponential one, we re-plot the data for t -+ CO as In M (  t )  against 
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Figure 1. A plot o f  In M ( I )  against In I for L S 6 4 .  Where the data overlap ( in practice, 
if they are within 2% of each other), only those for L = 6 4  are shown. A ,  64x64;  V, 
32x32; U, 16x 16; 0 8 x 8 ;  X, 4 x 4 .  
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Table 1. Details of the simulations 

System size, L 4 8 16 32 64 

Number of samples 33 792 8320 2176 576 124 

Range of f over which the 0-30 0-250 0-650 0-3000 
data overlap with L = 64 

T( L )  292 * 4 1628 * 54 991 1 * 321 103 506 * 2987 - 

t .  As can be seen from figures 2(a)-(d) ,  the finite-size effects are consistent with 
equation (46). 

From equations (3) and (46) we see that one can define a characteristic decay time, 
T(L) ,  by 

T (  L )  = c - ’Lz  ( 5 )  

thereby enabling one to evaluate the dynamic critical exponent. Figure 3 shows a plot 
of In T (  L )  against In L, where the values of T (  L )  (see table 1) have been obtained from 
the gradients of the best fits shown in figures 2(a)-(d) .  The above relationship (equation 
( 5 ) )  is expected to hold for L >> 1, i.e. for small L one expects corrections to finite-size 
scaling. In the present case, however, L = 4 does not appear to show any appreciable 
deviation from the other sizes considered. Fitting all of the data to equation ( 5 )  gives 
Z - 2.75, whereas a restricted fit over the last three points yields Z - 3.01. As there is 
some uncertainty involved in extracting T(  L ) ,  we should like to quote an average value 
of Z = 2.94 * 0.29 as our final estimate. Table 2 gives our result together with the other 
predictions which have been made [5-71. 

As mentioned above, for t <<. t c ( L )  one expects bulk-like power-law decay. We test 
for this behaviour in figure 4 which shows a magnified plot of figure 1 over the range 
2 s t s 3000. In order to improve the statistics, all of the available data-where they 
overlap-have been averaged. From equations (3), (4a) and the line of best fit over 
10s t s 3000, which is shown in figure 4, we get p /  YZ = 4.595 x lov2 F 1.94 x lo-’. 
Combining this result with our estimate for 2 leads to p/v=0.135*0.019; this 
compares favourably with the exact value of 0.125 [l]. 

Finally, as a self-consistent check, in figure 5 we plot In[ LP’”M( t, L)] against 
ln[tL-’] with p/v=0.125 and Z =2.94. This plot clearly shows that all of the 
data-including those for L = &can be explained by dynamic finite-size scaling. Note 
that such a plot becomes progressively worse as Z is increased or decreased; in 
particular, we can exclude [5] 2 = 4 on the basis of these data. 

At this point it is worth noting that there are systematic errors involved in the 
present analysis. Strictly speaking, the dynamic exponent quoted above depends both 
on L and M(r* ,  L ) ,  where t* is the longest time simulated for any given L, that is 

Z =  lim lim Z ( t * ,  L ) .  
L-02 ,*+a2 

In the present work, M (  t* ,  L )  varies considerably: M (  t* = 1000,4) - 0.03 and M (  t* = 
22 500,32) - 0.59. Consequently, for any given L, one introduces an error in the 
corresponding value of T ( L ) .  It should be made clear that the error bars quoted for 
T in table 1 do not take into account any systematic errors. As mentioned above, there 
is a further error-this time due to corrections to finite-size scaling-involved in 
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Figure 3. A log-log plot of r against L. The best fits .ar L = 8, 16, 32 ( fu l l  line) and for 
4 s L s 32 (broken line) are also shown. 

Table 2. The critical dynamic exponent Z for the two-dimensional four-state Potts model. 

Reference Value of Z 

Domany [ 51 4 
Forgacs et ol [6] 2.55 
Lage P I  2.68 
This work 2.94 * 0.29 

extracting Z from T( L ) .  As can be seen from figure 5, there d o  not appear to be either 
any significant finite-size nor systematic corrections. So, we can be fairly confident of 
our final estimate for the dynamic critical exponent. 

To conclude, we have used dynamic finite-size scaling to investigate the decay of 
the magnetisation from an  ordered state. We do  not find any appreciable corrections 
to finite-size scaling for the sizes considered. Our final estimate of Z (  q = 4), which 
certainly excludes the Domany [ 51 conjecture, indicates that the four-state Potts model 
probably does not belong to the same dynamic universality class as q = 2 or 3 .  

I should like to thank Dr R B Stinchcombe for a suggestion in the presentation of this 
work. The SERC (Great Britain) is acknowledged for financial assistance and  provision 
of computer time on the DAP at Queen Mary College, London. 
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Figure 4. A magnified plot of some of the data shown in figure 1. Only the data for t G 3000 
are shown (averaged over as many sizes as possible) and the line of best fit is for 
10s t s3000.  This has a gradient (= -p/vZ) of - 4 . 5 9 5 ~  IO-’* 1 . 9 4 ~  lo-’. 
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Figure S. A finite-size scaling plot of the data with p/  v = 0.125 and Z = 2.94. A,  64 x 64; 
V, 32x32; U, 16x16; 0, 8 x 8 ;  X ,  4 x 4 .  
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